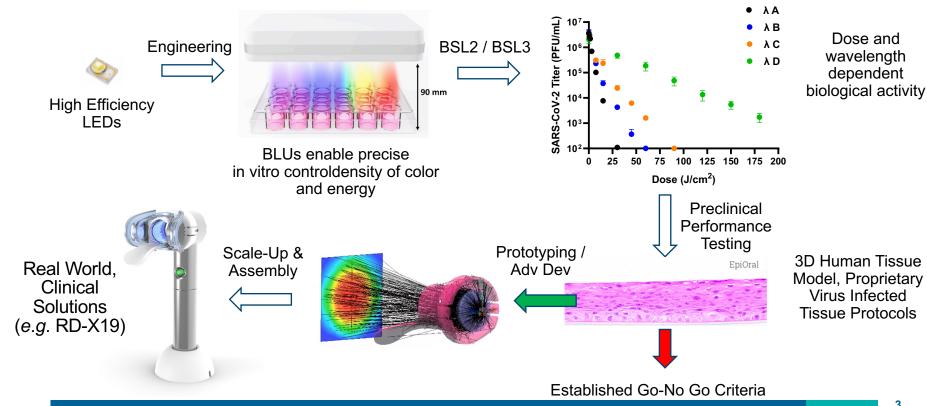
## A Phase II, Randomized, Sham-Controlled Dose-Finding Study of the RD-X19 Treatment Device in Individuals with Mild-to-Moderate COVID-19

Jacob F. Kocher, Ph.D. Director of Virology, EmitBio

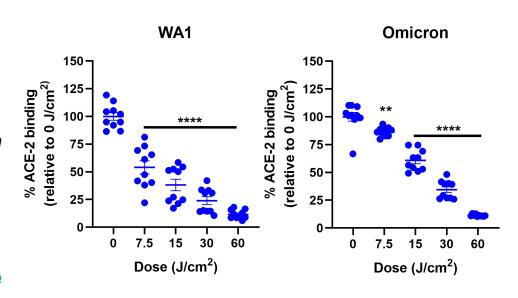
5<sup>th</sup> Edition of World Congress on Infectious Diseases

10/23/2023




#### **Presentation Outline**

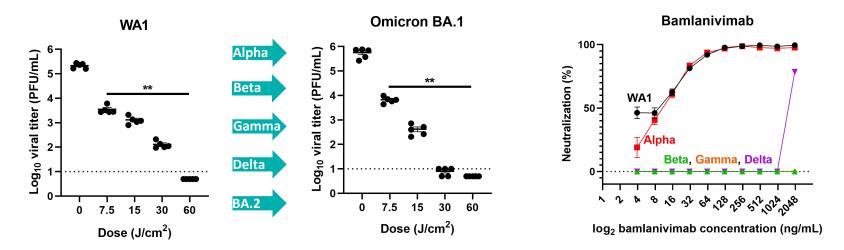
- Preclinical identification of 425 nm light as a variant-agnostic countermeasure against SARS-CoV-2
  - √ Stops cell entry
  - √ Slows viral replication
- Clinical evaluations of the RD-X19 as a therapeutic device against COVID-19
  - ✓ Accelerated symptom resolution in patients age 40+ with mild COVID-19
  - ✓ No disruption of oral microbiome diversity
  - ✓ Decreased nasopharyngeal viral load




## **EmitBio Translational Science Paradigm**



## 425 nm light inhibits SARS-CoV-2 spike trimer binding to ACE-2 in vitro


- Illuminated spike trimers and assessed binding to ACE-2
- Dose-dependent reduction in spike trimers binding to ACE-2 in vitro
- Reductions consistent across multiple variants, including those heavily mutated in spike



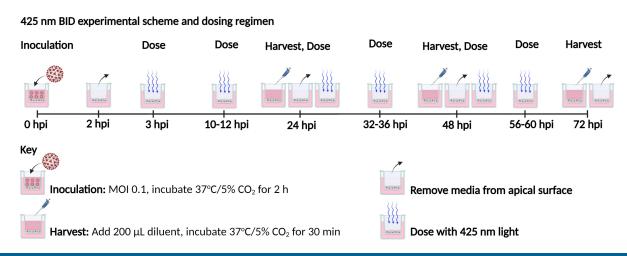


#### 425 nm light inactivates cell-free SARS-CoV-2

 425 nm light demonstrates consistent inactivation of SARS-CoV-2 variants regardless of mutations  Monoclonal antibodies (e.g. bamlanivimab) have reduced neutralization against Beta, Gamma, or Delta variants

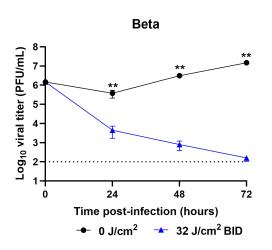


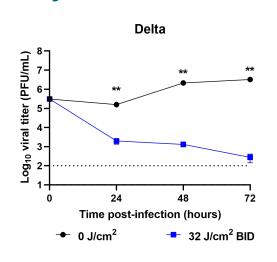
1. Stasko N, Cockrell A, Kocher J, et al. A randomized, controlled, feasibility study of RD-X19 in subjects with mild-to-moderate COVID-19 in the outpatient setting. Clin Trans Sci. 2022;15:1291-1303.

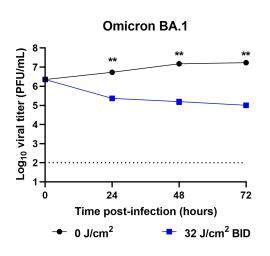

2. Kocher J, Arwood L, Roberts RC, Henson I, Annas A, Emerson D, Stasko N, Fulcher ML, Brotton M, Randell SH, Cockrell AS. Visible blue light inactivates SARS-CoV-2 variants and inhibits Delta replication in differentiated human airway epithelia. bioRxiv. 2022.01.25.477616; doi: https://doi.org/10.1101/2022.01.25.277616



# 425 nm light reduces viral titers in a well-differentiated model of the human airway


- Primary tracheobronchial cells cultured at the air-liquid interface differentiate and mimic airway in vivo
  - Cilia beating
  - Mucus production


- Model used for preclinical testing of:
  - Remdesivir (Veklury)
  - Nirmatrelvir/ritonavir (Paxlovid)
  - Molnupiravir (Lagevrio)

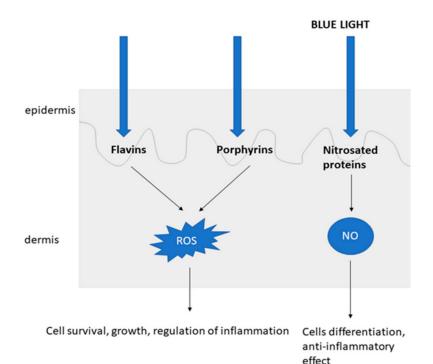





## 425 nm light reduces SARS-CoV-2 titers in a well-differentiated model of the human airway at non-cytotoxic doses







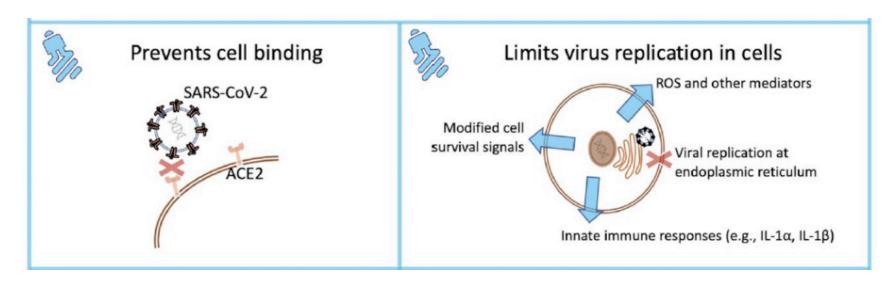

| 72 h (3 BID)                                                | Beta | Delta | Omicron BA.1 |
|-------------------------------------------------------------|------|-------|--------------|
| Log <sub>10</sub> reduction relative to 0 J/cm <sup>2</sup> | 5.1  | 4.2   | 2.2          |

~100% viability in time-matched, uninfected controls



### **How does High Energy Visible Light Work?**




- Generation of reactive oxygen species (ROS)<sup>1</sup>
- Release of nitric oxide (NO)
- Endoplasmic Reticulum (ER) stress and impaired RNA translation to protein<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> Nakato, R. et al. Regulation of the unfolded protein response via S-nitrosylation of sensors of endoplasmic reticulum stress. Sci. Rep. 5, 14812; doi: 10.1038/srep14812 (2015).



<sup>&</sup>lt;sup>1</sup>Sadowska M, Narbutt J, Lesiak A. Blue Light in Dermatology. Life. 2021; 11(7):670.

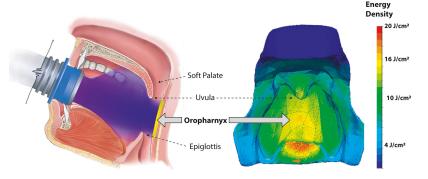
## **Antiviral Light Mechanism of Action**



## **Stops Entry**

#### **Slows Replication**

Zupin L, Gratton R, Fontana F, et al. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells. J. Biophotonics. 2021;14: e202000496.
 Stasko N, Kocher JF, Annas A, et al. Visible blue light inhibits infection and replication of SARS-CoV-2 at doses that are well-tolerated by human respiratory tissue. Sci Rep. 2021 Oct 18;11(1):20595.




## **RD-X19 Therapeutic Device Overview**





**RD-X19**: Handheld medical device that delivers 425 nm light to the oropharynx.<sup>1</sup>





**Duration**: 5-minute treatment, twice daily for 7 days.



Use: Intended for at-home use.

<sup>1</sup>Stasko N, Cockrell A, Kocher J, et al. A randomized, controlled, feasibility study of RD-X19 in subjects with mild-to-moderate COVID-19 in the outpatient setting. Clin Trans Sci. 2022;15:1291-1303.



## **Clinical overview**

| Trial | Purpose              |     | #<br>Subjects | Completion<br>Dates | Key Findings                                                                                                         |  |
|-------|----------------------|-----|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------|--|
| 1     | Safety               | P10 | 25            | September<br>2020   | RD-X19 is well-tolerated → no serious adverse events                                                                 |  |
| 2     | Early<br>Feasibility | P12 | 31            | January<br>2021     | RD-X19 treatment clinically meaningful → more rapid symptom resolution and viral load reduction                      |  |
| 3     | Dose ranging         | P20 | 216           | June<br>2022        | Clear treatment benefit, symptom resolution established in target populations to be confirmed by pivotal trial (P30) |  |
| 4     | Pivotal<br>(ongoing) | P30 | 326           | December<br>2023    | With time to symptom resolution repeated from P20, FDA approval targeted in 2024                                     |  |

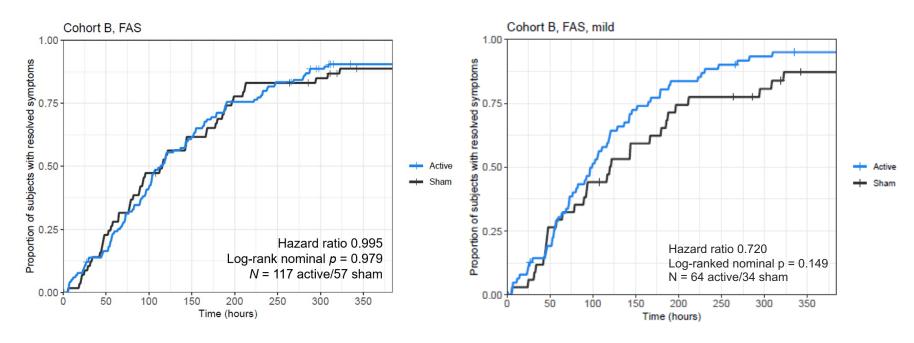


## Clinical Trial Overview EB-P20-01 (NCT04966013)

#### Population

- 216 adults, 18-65 years old with mild-to-moderate COVID-19
  - Full analysis set (FAS) or Safety Population: 176 adults in Cohort B treated with 32 J/cm<sup>2</sup>

#### Co-primary efficacy endpoint


- Time to sustained resolution of all eight COVID-19 signs and symptoms in subjects with mild-to-moderate COVID-19 or mild COVID-19
  - Mild (no lung involvement)
  - Moderate (lung involvement)

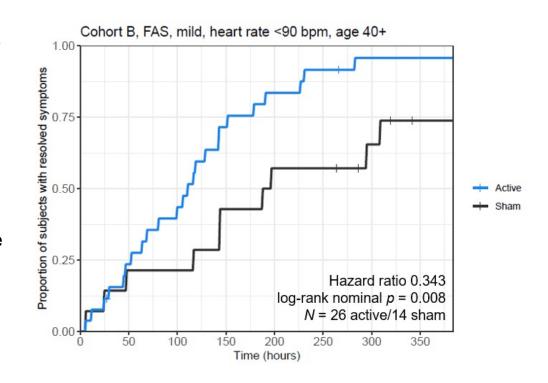
#### Other endpoints

- Microbiome impact
- Mean change in nasopharyngeal viral load



## EB-P20-01 Co-Primary Endpoint (NCT04966013)

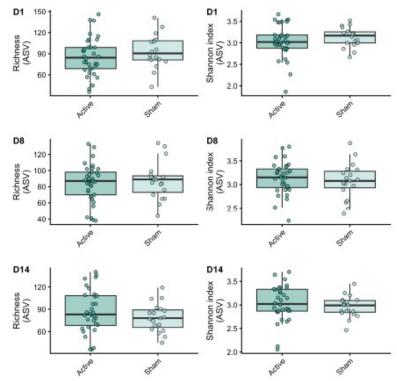



Cohort B ("Final Cohort") time to sustained resolution in the full analysis set (FAS) which includes subjects with **mild (no lung involvement) to moderate (lung involvement) disease** at baseline

Cohort B ("Final Cohort") time to sustained resolution in the full analysis set (FAS) which includes subjects with **mild (no lung involvement) disease** at baseline



## EB-P20-01 Post Hoc Endpoint Analysis (NCT04966013)

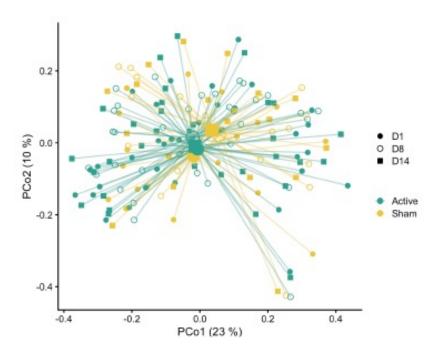

- Post Hoc Analysis: subset of subjects ages 40 years and older with mild COVID-19 and heart rate less than 90 beats per minute showed a 77-hour difference in symptom resolution.
  - Median times to sustained symptom resolution: 111 hours for the RD-X19 active treatment vs. 188 hours for the sham treatment
- Learnings: Use this population for evaluation of the 32 J/cm<sup>2</sup> device in the pivotal trial.
- Safety: No serious treatment-related adverse events.





The RD-X19 does not appear to impact the α-diversity of the oral microbiome

- Salivary samples collected at Days 1, 8, and 14. Microbiome analyzed by 16S rRNA sequencing<sup>1</sup>.
- Alpha diversity evaluated by sequence richness (left) and Shannon index (right).
- Similar results observed when accounting for disease, baseline severity, or age.




<sup>1</sup>FAS, all analyzable samples



## The RD-X19 does not appear to impact the β-diversity of the oral microbiome

- Salivary microbiome β-diversity analyzed via Bray-Curtis dissimilarity<sup>1</sup>.
- Similar results observed when accounting for nasopharyngeal viral load.



<sup>1</sup>FAS, all analyzable samples



# RD-X19 reductions in nasopharyngeal viral load compared to other COVID-19 therapeutics

| NP Viral Load<br>via RT-qPCR      | Mean Change<br>Vs. Control Arm<br>(log <sub>10</sub> ) | Timepoint | Trial<br>Number/<br>Reference |
|-----------------------------------|--------------------------------------------------------|-----------|-------------------------------|
| Sotrovimab                        | -0.23                                                  | Day 8     | COMET-ICE<br>(NCT04545060)    |
| Bamlanivimab                      | -0.27                                                  | Day 11    | BLAZE-1<br>(NCT04427501)      |
| RD-X19<br>(FAS)                   | -0.56                                                  | Day 5     | EB-P20-01<br>(NCT04966013)    |
| Bamlanivimab + etesevimab         | -0.57                                                  | Day 11    | BLAZE-1<br>(NCT04427501)      |
| Molnupiravir                      | -0.75                                                  | Day 5     | MOVe-OUT<br>(NCT04575597)     |
| Nirmatrelvir/ritonavir (Paxlovid) | -0.87                                                  | Day 5     | EPIC-HR<br>(NCT04960202)      |



## Clinical Trial Overview EB-P30-01 (NCT05817045)

#### Evaluation of the RD-X19 Treatment Device in Individuals with mild COVID-19

#### Population

- 40+ years of age meeting the FDA/NIH definition of mild COVID-19
  - Enrollment: 326 subjects across the US

#### Primary endpoint

 Time to sustained resolution of COVID-19 signs and symptoms without subsequent symptom recurrence or disease progression until the end of the study

#### Other endpoints

 Time to the first of two consecutive negative SARS-CoV-2 antigen tests without subsequent virological rebound



## **Summary**

- 425 nm light is a variant-agnostic approach against SARS-CoV-2.
- The RD-X19 does not disturb the richness or diversity of the oral microbiome.
- There is clinical evidence that the RD-X19 reduces the severity of COVID-19 symptoms.
- Further clinical investigation with the RD-X19 is ongoing.



www.emitbio.com

